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Summary

Reservoir fluid saturations and porosity are estimated using a

two-stage process consisting of an uncoupled geophysical

inversion of marine seismic amplitude versus angle (AVA) 

and controlled source electromagnetic data, followed by a 

Bayesian inversion, using the geophysical parameters derived

in the first stage and a rock-physics model to estimate

reservoir parameters. The two-stage process has the advantage

that it can be done using existing industry software, with only 

the addition of the electromagnetic inversions to estimate

electrical conductivity. The estimated water saturation and

porosity compare well to both log data and those derived from

a formal joint inversion of marine AVA and electromagnetic

data.  However, the two-stage estimates of oil and gas

saturation do not compare favorably to those obtained using a

formal joint inversion of both data sets simultaneously.

Introduction

Recent developments in the application of controlled source

marine electromagnetic (CSEM) data in petroleum

exploration have brought this technology to the attention of 

many in exploration and production within the oil and gas

industry.  These developments are founded on more than two

decades of research carried out in academia and at U.S.

national laboratories. The commercial availability of CSEM

data now makes it possible to consider integrating this new 

data with existing seismic data in ways that will add

considerable value.  In particular, the sensitivity of CSEM

data to water saturation (Sw), when combined with the spatial

and reservoir parameter sensitivity (porosity, Sw, gas

saturation [Sg], and oil saturation [So]) of seismic data, can

provide enhanced prediction of fluid saturations within

existing or prospective reservoirs.

There are many ways in which CSEM and seismic data can be 

combined to estimate reservoir parameters.  The possibilities

range from what we term cooperative inversion, in which both

data sets are used without any formal linkage in the inversion

of either, to fully coupled joint inversion, in which both data 

sets are inverted simultaneously to directly estimate reservoir

parameters.  Hoversten et al. (2003) present an example of the 

former, in which crosswell EM and seismic travel-time

tomography are used to estimate reservoir parameters using 

time-lapse changes in shear velocity, electrical conductivity,

and acoustic velocity to sequentially strip off the effects of 

pressure and water saturation before estimating oil and CO2

saturations.  Direct reservoir parameter estimation by joint

inversion was demonstrated by Hoversten et al. (2004), where

marine CSEM and AVA data were used in a formal joint 

inverse to estimate reservoir Sw, So, Sg, and porosity ( ).  The

formal joint inversion is currently being extended to replace

the 1D CSEM solution with full 3D.  While the development

and testing of more computationally demanding approaches is

underway there is interest in an approach that can be deployed

quickly.

One method for combining seismic and CSEM data is a 

relatively straightforward extension of what is currently done

using seismic data alone (Bachrach and Dutta, 2004). The use 

of Bayesian inversion, which couples a rock-physics model 

with estimates of geophysical parameters, can be extended to

include electrical conductivity.  In this paper, we demonstrate

the use of AVA inversion to estimate acoustic- (Vp), shear-

velocity (Vs), and density ( ) coupled with 3D CSEM 

(Newman and Boggs, 2004) inversion to estimate electrical

conductivity ( ) in a Bayesian inverse for reservoir fluid

saturations and .  This approach is compared to the formal

joint inversion described by Hoversten et al. (2004, 2005).

Theory and Method

There are three components to the integration of seismic and 

CSEM data for reservoir parameter estimation using the two-

stage approach mentioned above. These are:

1) Inversion of the data sets to produce estimates of

geophysical parameters (Vp, Vs, , and ).

2) Development of a rock-physics model that links

geophysical parameters to reservoir parameters.

3) Application of Bayesian inversion, which takes the 

estimated geophysical parameters (along with prior 

information) and combines the estimated geophysical

parameters with predicted geophysical parameters from 

the rock-physics model in the likelihood function, to 

estimate the reservoir parameters.

Geophysical Inversion 

Seismic Vp, Vs, and are estimated in a depth window 

covering the reservoir, using a Gauss-Newton type inversion

of AVA data.   The Zoeppritz equation is used to calculate the

angle dependent reflectivity, which are convolved with angle

dependent wavelets to form the calculated seismic data.  The

inversion is formulated as a least-squares minimization in

which the functional ( ), given by (1), is minimized. F[m] is

the forward model operator, m and mref are the model and

reference model parameter vectors respectively.
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The observed data (dobs) are amplitude-versus-angle (AVA)

gathers that have had NMO and residual NMO applied in 

addition to removal of multiples.  NMO stretch at the far

offsets as well as any internal mode conversions are

neglected. Linearizing (1) about a given model, mi, at the ith

iteration produces the quadratic form;

where , , ,obs calc obs calc

p pV V and  are the sonic log 

compressional velocity, model-calculated compressional

velocity, log density, and model calculated density,

respectively.

We have found that the estimated grain shear modulus, grain 

density, and Poisson’s ratio are nearly equal to that of feldspar

(the dominate grain type in the reservoir) if the logged Vp is

first reduced by 5%. The size of the reduction in Vp (5%) is

chosen from modeling of the frequency dependent velocity in

porous media (Muller and Gurevich, 2004).

1

T T T

i

T T T

i i

DJ DJ W W C C m

DJ DJm DJ D d C h

(2)

where  is solved by using a quadratic programming

algorithm that allows bounding of the parameters. D is a data 

weighting matrix (usually a diagonal of the inverse of 

observed errors), W is a regularization matrix (usually

representing the first spatial derivatives of the model

parameters) and the current difference between calculated

( ) and observed data ( ) is given 

by , where J is the Jacobian matrix, or

sensitivity matrix.  The Lagrange multiplier is adjusted from

large to small as iterations proceed.  Additional linear

relations such as a velocity-density relationship are

implemented using a separate Lagrange multiplier, .
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The three parameters, C, m, and n, of Archie’s law, Equation

(4), are found by linear regression in the log10 domain:

m n
wbulkR CS   (4) 

Employing the Sw, Rbulk, and logs from the same well used 

for the seismic model parameters yields values of 0.78 m,

1.31 and 0.14 for C, m, and n, respectively.  The low value of

n indicates very little sensitivity to porosity. This was also 

noted in developing Archie’s law parameters for logs from the 

Snorre field in the North Sea (Hoversten et al., 2001) and was 

caused, in that case, by clay filling the pore space.  The small

value of n causes the CSEM inversions to be relatively

insensitive to .

The electrical conductivity is estimated by 3D CSEM

inversion using the algorithm described by Newman & Boggs 

(2004).

Bayesian Inversion

We use a Bayesian model (Chen et al. 2004) to estimate 

reservoir parameters at each pixel in space, which include ,

,wS gS , So = 1-(Sg+Sw), and pore pressure, given the 

inverted, co-located bulk modulus ( ), shear modulus (bk sk ),

density ( ), and natural logarithmic of electrical conductivity

( ). Based on Bayes theorem, the joint posterior distribution

of unknown variables at each pixel in space is given by the

following formula:

Rock-Physics Model

The estimation of reservoir parameters requires a rock-

properties model that links the reservoir with geophysical

parameters. The model we have adopted uses the Hertz-

Mindlin contact theory for the dry-frame bulk and shear 

moduli of a dense, random pack of spherical grains. Modified

Hashin-Shtrikman lower bounds are used to calculate the 

effective moduli for porosities below the critical porosity.

This model is used in a combined seismic and EM inversion

described by Hoversten et al. (2003).  Archie’s law is used to 

model electrical resistivity as a function of  and Sw. The

fluid bulk moduli and densities of brine, oil, and gas, 

respectively, are computed using relations from Batzle and

Wang (1992).

( , , , | , , , )

( , , , | , , , ) ( , , , ).
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The first term on the right side of Equation 5 is referred to as

the likelihood function, which is the connection between the

input data and unknown variables. The second term is referred

to as the prior distribution function, which is a summary of all

the information not included in the data. Equation 5 is correct

up to an unknown normalizing constant, which is not needed

for Markov chain Monte Carlo (MCMC) methods employed

here.

The field data come from the Troll Field in the North Sea.

Log data from a well approximately 4 km to the northeast of

the geophysical survey was used to derive the rock-physics

model.  Seismic rock-physics model parameters are found by

using a simplex algorithm to minimize L1, given by Equation

(3).

1
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We use a MCMC sampling method similar to the ones 

presented in Chen and Hoversten (2003) to obtain many

samples of each unknown variable from the joint posterior

distribution function. The method includes three major steps:

(1) deriving full conditional distribution function for each
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variable; (2) sequentially drawing samples from those 

conditional distributions; (3) making inferences from those

samples. Details of the sampling methods used can be found 

in Gilks et al. (1996).

Examples

Seismic and marine CSEM data were acquired over a portion

of the Troll Field in 2003. Twenty four CSEM receiver units

were laid out in a line, with a nominal separation of 750 m.  A

220 m electric dipole transmitter, producing an 800 amp

square wave, was towed at 2 knots along the receiver line in

both directions, producing data at the receivers for 

transmitters on either side of the receiver. The electric dipole

transmitter is nominally aligned with the survey line, with 

course corrections and ocean currents producing some 

variation in the orientation of the transmitter along the line.

Received CSEM data along with the transmitter locations and

current are recorded as time series. In postprocessing, the

CSEM time series are averaged to produce in-phase and out-

of-phase electric fields for average transmitter locations

spaced 100 m apart along the line.  The transmitter

fundamental is 0.25 Hz. There is sufficient power to extract

the third and fifth harmonics, so that three frequencies (0.25,

0.75, and 1.25 Hz) were acquired.

A 3D seismic data set was also acquired in 2003 and

processed to produce NMO corrected gathers suitable for

AVA inversion.  Figure 1 shows the estimated Vp and  from

AVA inversion in the upper two panels (Vs was also

estimated but is not shown). The CSEM data from all 24 

receiver stations on the line were inverted simultaneously,

using the 3D finite-difference based inversion code described

by Newman & Boggs (2004).  The resulting conductivity

section is shown in the lower panel of Figure 1. 

The geophysical data shown in Figure 1 (along with estimate 

Vs) were used as input data to the Bayesian inversion.  Figure 

2 shows the estimated Sw (upper panel),  (middle panel), and

Sg (lower panel).

Considerable well control exists in the area of the survey line.

The current interpretation based on geophysical and

production data is that the reservoir unit (outlined by black

dots in Figures 1 and 2) is predominantly gas and oil filled in

the upper two-thirds of the section shown to the left of the 

fault at approximately -4,500 m.  To the left of this fault (on 

the down thrown side) the reservoir unit is brine filled. The

two-stage estimates show a zone of relatively high Sg on the 

down thrown side of the fault where only brine is expected.

Modeling and analysis continues to assess these results in 

light of the existing interpretation.

Figure 3 shows a comparison of the fluid saturation estimates

and  at the well location made by full joint inversion

(Hoversten et al., 2004) and the two-stage approach described

here.  Both types of inversion produce good agreement with 

logged values for Sw and .  However, the two-stage process 

has done a poor job of estimating So and Sg.

Figure 1: Inverted Vp (upper panel),  (middle) and  (lower)

used for Bayesian inversion for reservoir parameters. Black

plus symbols outline the reservoir interval. Log values are

overlaid at the well location for comparison.

Conclusions

A two-stage process of inversion for geophysical parameters

followed by Bayesian inversion is an attractive alternative to

full joint inversion of seismic and CSEM data sets, because

two-thirds of the pieces already exist within the normal

industry work flow. Only electromagnetic inversion has to be

added to estimate electrical conductivity. The tests conducted

here show that this simple-to-implement two-stage process

provides good estimates of Sw and  but poor estimates of the 

oil and gas saturations.

Work continues on evaluating the affect of prior information

and errors in the geophysical parameter estimates required in

the Bayesian process.  Improvements in estimated So and Sg

from the two-stage process are possible.
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Figure 2: Estimated Sw (upper panel), (middle panel) and Sg

(lower panel) from Bayesian inversion of the geophysical

parameters shown in Figure 1.  Log values are at the well 

location for comparrison. Estimates shown only in the reservoir.

Figure 3: Comparison of estimated reservoir parameters using 

full joint inversion and using the two-stage inversion process.

Panels from left to right are Sw, Sg, So and, .  Full joint inversion 

estimates are shown by the blue line, red dots are log values,

dashed black lines are 95% confidence estimates on joint

inversion estimates, and dashed magenta lines are estimates from

Bayesian inversion in the two-stage process.
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